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— Experimental Results —

ΣAE with performance on 4 weakly-supervised seq2seq tasks

Symbolic Auto Encoding (ΣAE)

• X: Discrete sequential representation of input features
• Enc, Dec: The encoder and decoder models.

Any sequence model, e.g., transformers trained on next 
token prediction or diffusion transformers, recurrent 
neural networks, etc.

• DB: Point of quantization in the encoder model, 
introducing non-differentiability.
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Deciphering the Rosetta Stone – a weakly supervised task
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à Problem. The model never receives gradient feedback 
on the discrete decision of when to halt generation.
Solution. Use Gradient Approximation for Halting the 
Generation. While 𝑚 is not differentiable, 𝔼[𝑚] is:

Hidden sequence collapse and EOS Soft-
Masking

• Trains the encoder to compress the longer sequence to a short 
code and the decoder to reconstruct the sequence.

• The shorter code has same meta features (vocabulary size and 
maximum length) as the ground truth shorter sequence.

SCAN PCFG COGS CFQ

Softmax DB 1.00 0.74 0.98 0.99
0.96 0.31 0.55 0.69

Gumbel DB 0.98 0.75 0.98 0.99
0.74 0.36 0.51 0.43

VQ DB 1.00 0.44 0.94 0.90
0.93 0.00 0.03 0.00

ΣAE sentence accuracy in unsupervised 
compression task
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compute the NLL loss when label token existsOutput embedding of a 
generative model serve as input for subsequent models or layers
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Why ΣAE?
• Humans think, plan, and reason using symbols.
• Symbolic representations capture efficient and concise 

information, enhancing model sample efficiency.
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Symbolic Autoencoding for Self-Supervised Sequence Learning

Dataset Sample

SCAN
X: look right thrice after run left
Z: I TURN LEFT I RUN I TURN RIGHT I LOOK
I TURN RIGHT I LOOK I TURN RIGHT I LOOK

PCFG SET
X: echo append append E18 C13 ,
L18 M17 , R1 L1 Y1 T18 J18
Z: E18 C13 L18 M17 R1 L1 Y1 T18 J18 J18

CFQ

X: Who influenced M1 ’s cinematographer , writer , and editor
Z: SELECT DISTINCT ?x0 WHERE
?x0 a ns:people.person.
?x0 ns:influence.influence node.influenced ?x1.
?x1 ns:film.cinematographer.film M1.
?x1 ns:film.editor.film M1.
?x1 ns:film.writer.film M1.

COGS X: Olivia rolled Liam.
Z: roll . agent ( x 1 , Olivia ) AND roll . theme ( x 1 , Liam )

• PCFG SET (Hupkes et al., 2019) is a synthetic dataset generated using probabilistic context-free grammars, aimed at
testing the systematic generalization of models.

• CFQ (Keysers et al., 2019) is a large-scale dataset of complex natural language questions and their corresponding
SPARQL query against the Freebase knowledge base designed to measure the compositional generalization capabilities
of semantic parsing models, with questions constructed to reflect the compositional structure of Freebase.

• COGS (Kim & Linzen, 2020): COGS is a dataset for evaluating the generalization of semantic parsing models to novel
linguistic structures, emphasizing the model’s ability to generalize from given sentences to new sentences that have
similar syntactic structures but different lexical items or phrasal constructions.

These datasets were chosen for their controlled environments and precise accuracy measures, making them ideal for
evaluating the framework’s performance. Examples of samples from each dataset are provided in Table 1.

The selection of these datasets ensures a comprehensive and nuanced evaluation of the ⌃AE framework. They facilitate
direct evaluation of our approach, avoiding reliance on proxy metrics often used with larger datasets. Here, the mapping
from X to Z is unique and non-reversible, with Z typically being the longer sequence, serving as a reliable ground truth
for X . Our study diverges from the typical use of these datasets for compositional generalization. Instead of focusing on
out-of-distribution testing, we emphasize in-distribution performance assessment. We also conduct a bidirectional evaluation
of both Mxz and Mzx models, reflecting realistic seq2seq model applications where translation in both directions holds
equal significance, in line with the suggestions of (Bastings et al., 2018).

A.4. Details on Tasks, Model Architecture, and Hyperparameters

We conducted two sets of experiments on each dataset:

• Unsupervised Training: In this scenario, we only have access to unparallel data. The primary goal is to reconstruct Z

from a hidden discrete sequence. The framework matches the dictionary size and the maximum sequence length of the
hidden representation to those of X . This setup evaluates the ⌃AE framework’s ability to compress the input sequence
into a shorter sequence and accurately reconstruct it.

• Weakly-supervised Training: This scenario simulates the Rosetta Stone problem, where a small portion of the data
is parallel, and the rest is unparallel. The objective is to leverage both parallel and unparallel data by minimizing
unsupervised losses (Lzxz and Lxzx) and supervised losses (Lzx and Lxz). We conduct experiments for each dataset
and DB implementation, varying the supervision ratio ⌘ = |Dxz|

|Dxz|+|Dx|+|Dz| . This allows us to assess how effectively
the framework uses limited parallel data to improve performance on larger unparallel datasets.
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Dataset example pairs • Datasets chosen for their 
compositional complexity, 
controlled environments, and 
precise accuracy measures.

• We measure token-level and
sentence-level accuracy on 
the Z space (the longer 
sequence).

• In Unsupervised Compression 
Experiments we demonstrate 
the feasibility of symbolic 
autoencoding with straight-
through gradient updates.

• In Weakly Supervised 
Experiments we study the 
efficiency of ΣAE in utilizing 
small amounts of parallel data 
and a large unparallel corpus 
in a Rosetta Stone setting.

• Results for Softmax DB: In the forward pass, we select the 
most likely token, and in the backward pass, we differentiate 
through a Softmax average of dictionary embeddings.

• Three Baselines: Finetuning T5-Large, in-context learning with 
GPT-3.5, and supervised training from scratch using only the 
available parallel data.
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à Approximate the gradient of the quantized vector with 
that of it’s continuous relaxation: @vq
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