Symbolic Autoencoding for Self-Supervised Sequence Learning

Mohammad Hossein Amani Martin Josifoski

Nicolas Mario Baldwin* Maxime Peyrard

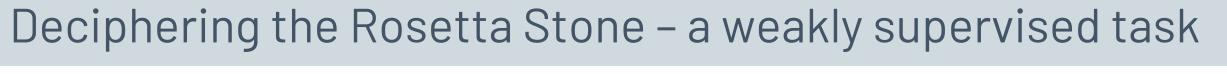
Amin Mansouri* **Robert West**

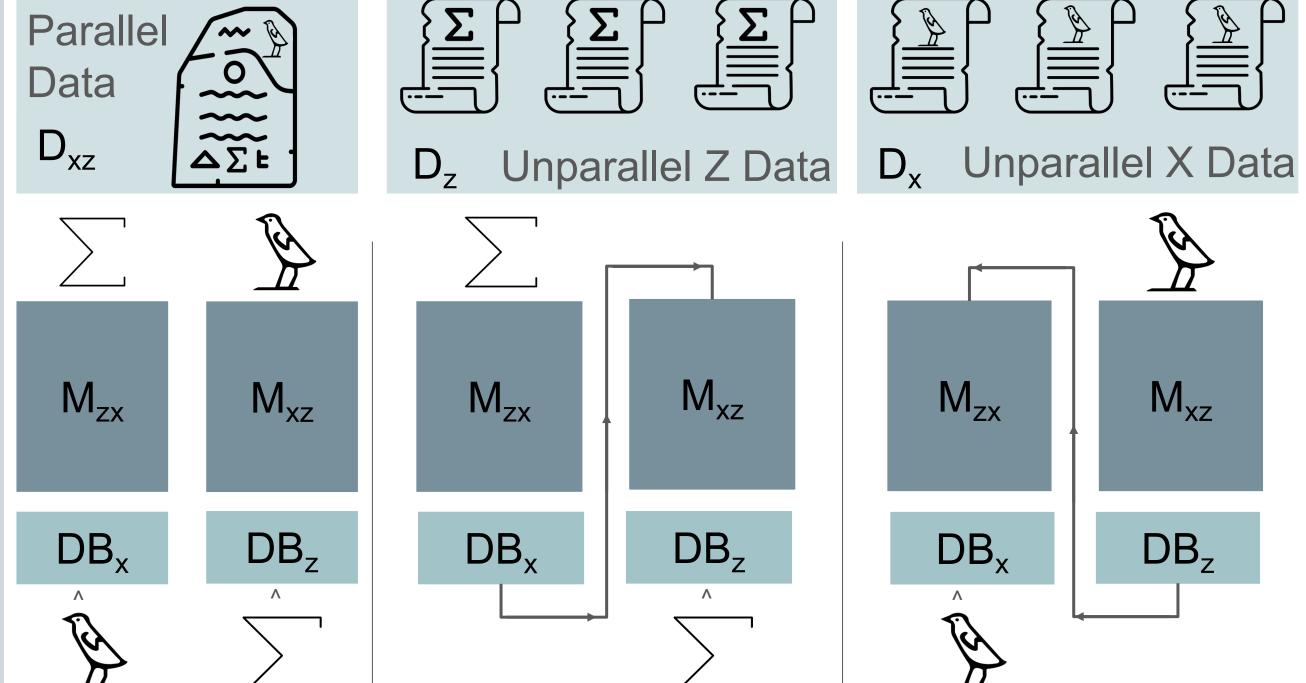
Symbolic Auto Encoding (ΣAE)

Why ΣAE ?

- Humans **think**, **plan**, and **reason** using symbols.
- Symbolic representations capture efficient and concise information, enhancing model **sample efficiency**.

- X: Discrete sequential representation of input features
- **Enc, Dec:** The encoder and decoder models. Any sequence model, e.g., transformers trained on next token prediction or diffusion transformers, recurrent neural networks, etc.
- **DB:** Point of quantization in the encoder model, introducing non-differentiability.





Ш

S compute the NLL loss when label token exists Output embedding of a DB generative model - \mathbf{V}_q serve as input for subsequent models or layers

$$\sum_{\mathbf{x}} \mathbf{D} = \left\{ D[\mathbf{x}], D[\mathbf{x}], \cdots, D[\mathbf{x}'] \right\} \xrightarrow{\mathbf{v}} \mathbf{s} = \begin{pmatrix} \mathbf{s}[\mathbf{x}] \\ \mathbf{s}[\mathbf{x}] \\ \vdots \\ \mathbf{s}[\mathbf{x}'] \end{pmatrix} \qquad \mathcal{L}_{zx} = -\sum_{t} \log \mathbf{s}_{x}^{t}[x^{t}] \\ \hat{x}^{t} = \mathbf{x} \\ \mathbf{x}^{t} = \mathbf{x$$

Hidden sequence collapse and EOS Soft-Masking

$$\mathbf{DB} \quad \mathbf{v}_{q}^{, D[\mathbf{c}], \cdots \end{bmatrix}$$
$$\mathbf{m}^{
$$\mathbf{v}_{q}^{] \odot (1-\mathbf{m}^{$$$$

 \rightarrow **Problem.** The model never receives gradient feedback on the discrete decision of when to halt generation. **Solution**. Use Gradient Approximation for Halting the Generation. While m is not differentiable, $\mathbb{E}[m]$ is:

$$\mathbb{E}[\mathbf{m}[i]] = \prod_{k=1}^{i-1} \left(1 - \mathbb{P}(O_k =) \right)$$

 $\mathbf{m} \leftarrow \mathbf{m} + \mathbb{E}[\mathbf{m}] - sg(\mathbb{E}[\mathbf{m}])$

- Experimental Results -

Dataset example pairs

Dataset	Sample
SCAN	X: look right thrice after run left Z: I_TURN_LEFT I_RUN I_TURN_RIGHT I_LOOK I_TURN_RIGHT I_LOOK I_TURN_RIGHT I_LOOK
PCFG SET	X: echo append append E18 C13, L18 M17, R1 L1 Y1 T18 J18 Z: E18 C13 L18 M17 R1 L1 Y1 T18 J18 J18

 $\frac{\partial \mathbf{v}_q}{\partial \mathbf{z}_q} \approx \frac{\partial \mathbb{E}\mathbf{S}\left[D\right]}{\partial \mathbb{E}\mathbf{S}\left[D\right]}$

 $\partial \mathbf{v}$

 $\partial \mathbf{v}$

- Datasets chosen for their • compositional complexity, controlled environments, and precise accuracy measures.
- We measure **token-level** and sentence-level accuracy on the Z space (the longer sequence).
- In Unsupervised Compression

 ΣAE sentence accuracy in unsupervised compression task

	SCAN	PCFG	COGS	CFQ
Softmax DB	1.00	0.74	0.98	0.99
	0.96	0.31	0.55	0.69
Gumbel DB	0.98	0.75	0.98	0.99
	0.74	0.36	0.51	0.43
VQ DB	1.00	0.44	0.94	0.90
	0.93	0.00	0.03	0.00

CFQ	 X: Who influenced M1 's cinematographer , writer , and editor Z: SELECT DISTINCT ?x0 WHERE ?x0 a ns:people.person. ?x0 ns:influence.influence_node.influenced ?x1. ?x1 ns:film.cinematographer.film M1. ?x1 ns:film.editor.film M1. ?x1 ns:film.writer.film M1.
COGS	X: Olivia rolled Liam. Z: roll . agent (x_1 , Olivia) AND roll . theme (x_1 , Liam)

xperiments we demonstrate he feasibility of symbolic utoencoding with straighthrough gradient updates.

Weakly Supervised xperiments we study the fficiency of ΣAE in utilizing mall amounts of parallel data ind a large unparallel corpus in a Rosetta Stone setting.

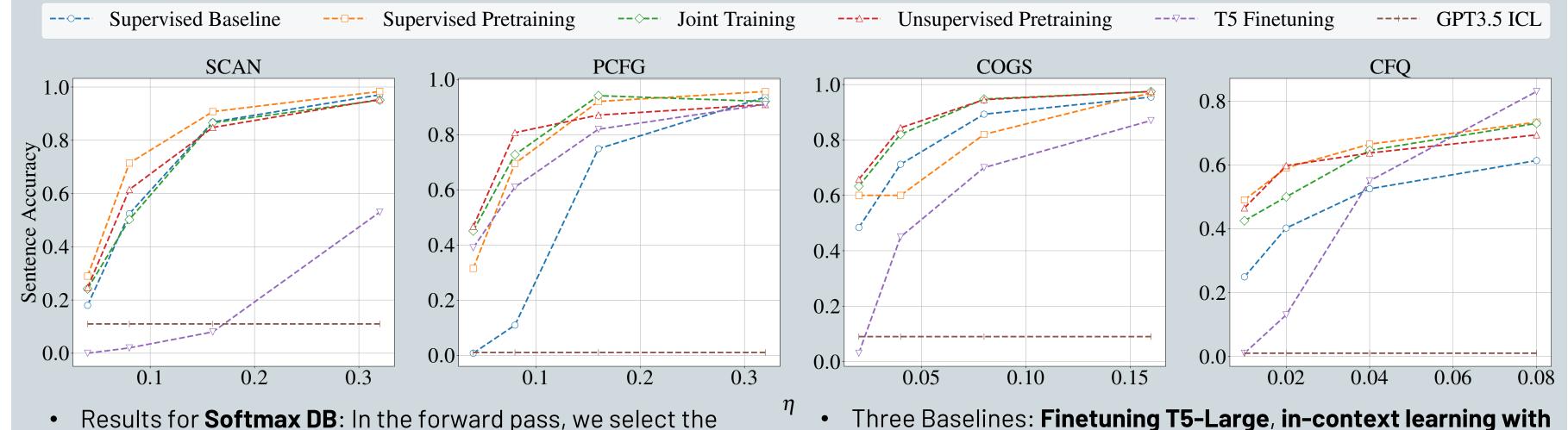
available parallel data.

GPT-3.5, and supervised training from scratch using only the

- Trains the encoder to compress the longer sequence to a short code and the decoder to reconstruct the sequence.
- The shorter code has same meta features (vocabulary size and maximum length) as the ground truth shorter sequence.

</>

ΣAE with performance on 4 weakly-supervised seq2seq tasks



Paper? Code & Data?

Differentiable Almost Everything On Machine Learning Workshop

Results for **Softmax DB**: In the forward pass, we select the • most likely token, and in the backward pass, we differentiate through a Softmax average of dictionary embeddings.